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a b s t r a c t 

Data streams with missing values are common in real-world applications. This paper presents an evolv- 

ing granular fuzzy-rule-based model for temporal pattern recognition and time series prediction in online 

nonstationary context, where values may be missing. The model has a modified rule structure that in- 

cludes reduced-term consequent polynomials, and is supplied by an incremental learning algorithm that 

simultaneously impute missing data and update model parameters and structure. The evolving Fuzzy 

Granular Predictor (eFGP) handles single and multiple Missing At Random (MAR) and Missing Completely 

At Random (MCAR) values in nonstationary data streams. Experiments on cryptocurrency prediction show 

the usefulness, accuracy, processing speed, and eFGP robustness to missing values. Results were compared 

to those provided by fuzzy and neuro-fuzzy evolving modeling methods. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Detecting patterns, trends, seasonalities, nonstationarities in

temporal data may help human decision-making in a variety of

situations and endeavors. Pattern recognition, machine learning

and computational intelligence methods have been considered

to discover useful information in datasets. In particular, models

to deal with time-varying data streams must take into account

that: (i) samples cannot be permanently stored; (ii) data sets

are potentially unbounded; (iii) processing time should not scale

exponentially with the number of samples, attributes and param-

eters; and (iv) the data distribution may change and new patterns

may emerge [1,5,9,10] . 

The vast majority of stream-oriented learning methods require

the values of all attributes to be available to work properly [4,15] .

However, missing values are common in real-world applications.

Missing data arise due to incomplete observations, data transfer

problems, and malfunction of sensors [3] . Four ways for handling

missing data can be mentioned: (i) discard incomplete samples, or

attributes with more than a predefined percentage of their values

missing; (ii) impute zeros, mean, or median for an attribute; (iii)
∗ Corresponding author. 
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mpute values by maximum likelihood and parameter estimation

rocedures; and (iv) identify relationships among attributes and

revious values to estimate the missing values. 

Statistical and intelligent methods have been proposed to deal

ith missing data in offline settings [13] . These methods rely on

echniques such as Fuzzy C-Means Clustering [2] , Support Vector

egression [2,16] , Weighted K-Nearest-Neighbor and Auto-Encoder

3] , Regularized Expectation-Maximization and Bayesian Principal

omponent Analysis [13] , Time Warping [14] , and Neural Networks

6] . These techniques may be combined with machine-learning

rocedures. Often, meta-heuristics, e.g. multi-objective Genetic

lgorithm [2,12] or Bio-Inspired [6] techniques are used for param-

ter adaptation. Intelligent models provide a nonlinear way to im-

ute missing data based on information uncovered from the data. 

Limitations of the aforementioned methods include: (i) prior

vailability of a closed dataset is generally necessary; (ii) in spite

f the use of nonlinear models, offline learning methods require

ultiple passes over the data to determine the parameters of the

mputation model; and (iii) the resulting predictor does not deal

ith typical changes of online time-varying environment. A survey

n evolving fuzzy and neuro-fuzzy systems that deal with these

ssues and additional challenges of online modeling and learning

as published in [17] . 

An evolving, fuzzy-rule-based model, modified to include a

ecurrent learning algorithm for missing-data imputation and

https://doi.org/10.1016/j.patrec.2019.09.012
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odel adaptation, which we call Evolving Fuzzy Granular Predic-

or, is presented in this paper. eFGP is useful for prediction in

ime-varying environment. Its rule base is built from scratch based

n a data stream that may contain MAR and MCAR values. A single

issing value on a data sample is handled using reduced-term

onsequent polynomials, whereas multiple missing values are dealt

ith using the essence of time-varying fuzzy granules evolved in

he data space. Therefore, eFGP is different from any other evolv-

ng intelligent approach because it addresses single and multiple

AR and MCAR values in time-varying online environment. 

. Missing data 

A datum is missing if no value is available for the underlying

ttribute of a sample. Case deletion and imputation transform an

ncomplete dataset into a fully-populated rectangular format. How-

ver, the first option is useful only if the number of missing values

s small. Depending on the nature of the missing data, they are

lassified as MCAR, when the probability of any value being miss-

ng is equal to the probability of any other value being missing;

nd MAR, when the propensity of the values of a specific attribute

o be missing is higher than those of other attributes, e.g., a sensor

s not working properly, or one of the questions in a survey is

arder to answer than the others. Slightly different definitions and

nterpretations may be found across research communities. 

Model-based imputation is grounded on statistical and

achine-learning fundamentals. While linear and stationary

nterpolation for imputation may make the completed dataset

iased depending on the level of nonlinearity and nonstationarity

nvolved, nonlinear model-based imputation replaces the miss-

ng value with the best estimate based on previously sampled

ata [11] . Data streams impose further challenges to nonlinear

odeling such as reasonably limited time and memory. 

. Evolving fuzzy granular predictor 

A rule-based model may have its parameters and structure

pdated when the data stream changes. Handling multiple MAR

nd MCAR values incrementally for the purpose of predicting

uture values of a data stream is a concern of eFGP. eFGP provides

ointwise and granular prediction of nonstationary functions,

nd linguistic description of the behavior of a system by means

f IF-THEN rules. The granular prediction encloses output data,

nd may help decision making and improve model acceptability.

he enclosure may be interpreted as optimistic and pessimistic

stimates in an application, which can be more important than

he numerical estimates since, with pointwise values, we have no

dea about the error or uncertainty involved in the estimation.

nline learning of eFGP models can start from scratch. Rules are

eveloped as new information is uncovered from the data. 

Let ( x , y ) [ h ] , h = 1 , . . . , be the h th observation of a data stream.

 ∈ � 

n is an input multi-dimensional vector, and y ∈ � is the

ctual output. The actual output y [ h ] will be known after the

nput x [ h ] arrives and a prediction ˆ y [ h ] is given. An attribute x j 
f x = (x 1 , . . . , x n ) is a real value. The same holds for y . The

air ( x , y ) is a point in the product space X × Y . Let γ i ∈ X × Y ,

 = 1 , . . . , c, be the current set of eFGP granules built on the basis

f ( x , y ) . Rules R i governing granules γ i are given as 

R 

i : IF (x 1 is A 

i 
1 ) AND . . . AND ( x n is A 

i 
n ) 

THEN (y is B 

i ) ︸ ︷︷ ︸ 
Linguistic 

AND 

(
ˆ y = p i (x 1 , . . . , x n ) ︸ ︷︷ ︸ 

Functional 

OR 

ˆ y = q i θ (x 1 , . . . , x θ−1 , x θ+1 , . . . , x n ) , θ = 1 , . . . , n ︸ ︷︷ ︸ 
Functional with reduced argument-list ( x θ omitted) 

)

here x θ is a missing value; A 

i 
j 
= ( l i 

j 
, λi 

j 
, �i 

j 
, L i 

j 
) and

 

i = (u i , υ i , ϒ i , U 

i ) are trapezoidal membership functions re-

ated to the i th rule; and p i and q i 
k 

are affine functions. The core of

 membership function, say A 

i 
j 
, is the region [ λi 

j 
, �i 

j 
] of the uni-

erse of x j characterized by elements with full membership in the

et A 

i 
j 
. The boundary parameters of a membership function form

ts support. The support of A 

i 
j 

is the region [ l i 
j 
, L i 

j 
] of the universe

 j characterized by elements with nonzero membership in the set

 

i 
j 
. Notice that q i 

k 
has one term less than p i and that a disjunction

perator (OR) relates the terms. The set of rules R i , i = 1 , . . . , c,

s a fuzzy granular description of a system. Initially, c = 0 , i.e., no

rior knowledge is assumed. A rule provides a granular (by means

f active output fuzzy sets B i ) and a pointwise (by means of p i or

 

i 
θ

) prediction. The functional consequent is given by either p i , in

ase x [ h ] is complete, or q i 
θ
, in case x θ is missing. The linguistic

onsequent offers prediction bounds and interpretability, since

rapezoids B i can be joined to linguistic values. 

Affine functions are given as 

p i ( x ) = αi 
0 + 

n ∑ 

j=1 

αi 
j x j and q i θ ( x ) = β i 

0 θ + 

n ∑ 

j =1 , j � = θ
β i 

jθ x j , (1)

= 1 , . . . , n . Consequent functions, p i and q i 
θ

∀ θ, are updated us-

ng the Recursive Least Squares algorithm [7] . As trapezoids A 

i 
j 

may

verlap, eFGP pointwise prediction is found as the weighted mean

alue, 

ˆ 
 = 

∑ c 
i =1 


i 
com 

p i (x 1 , . . . , x n ) ∑ c 
i =1 


i 
com 

, (2) 

or a complete x , or 

ˆ 
 = 

∑ c 
i =1 


i 

inc 
q i 
θ
(x 1 , . . . , x θ−1 , x θ+1 , . . . , x n ) ∑ c 

i =1 

i 

inc 

, (3) 

f x θ is missing; where 
 i 
com 

= T (A 

i 
1 
(x 1 ) , . . . , A 

i 
n (x n )) or 
 i 

inc 
=

 (A 

i 
1 
(x 1 ) , . . . , A 

i 
θ−1 

( x θ−1 ) , A 

i 
θ+1 

( x θ+1 ) , . . . , A 

i 
n ( x n )) is the activation

egree of R i for x complete or not; T is any triangular norm, e.g.

he minimum operator. 

Granular prediction is given by the convex hull of sets B i 
∗
,

here i ∗ are indices of active granules for x [ h ] . The convex hull of

 set of trapezoids, say B 1 , . . . , B c , is 

ch (B 

1 , . . . , B 

c ) = (T (u 

1 , . . . , u 

c ) , T (υ1 , . . . , υc ) , 

S(ϒ1 , . . . , ϒ c ) , S(U 

1 , . . . , U 

c )) , (4) 

here S is a triangular conorm, e.g. the maximum operator. 

Suppose a sample x [ h ] has multiple missing values, say x θ1 

nd x θ2 
. A straightforward, but not practical, approach to deal

ith multiple missing data is to consider additional consequent

unctions with fewer terms. However, the number of parameters

o be updated would scale exponentially with the number of at-

ributes. An effective approach for multiple missing values consists

n imputing the midpoint of membership functions related to the

ost active rule for the missing values. In this case, the activation

evel of the rule R i , i = 1 , . . . , c, is calculated as 

i 
inc = T (A 

i 
1 (x 1 ) , . . . , A 

i 
θ1 −1 (x θ1 −1 ) , A 

i 
θ1 +1 (x θ1 +1 ) , 

. . . , A 

i 
θ2 −1 (x θ2 −1 ) , A 

i 
θ2 +1 (x θ2 +1 ) , . . . , A 

i 
n (x n )) . (5) 

If R i is the most active rule for x [ h ] according to 
 i 

inc 
, then the

idpoint of its membership functions related to the missing values

re used for imputation. The midpoint is the mean value of the

ore parameters, that is, 

 

[ h ] 

θ1 
= 

(λi 
θ1 

+ �i 
θ1 

) 
and x [ h ] 

θ2 
= 

(λi 
θ2 

+ �i 
θ2 

) 
. (6) 
2 2 
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The imputed sample is used by the fuzzy model to provide nu-

merical and granular predictions at the time step h . The multiple-

imputation procedure extends straightforwardly to larger amounts

of missing data per sample. 

Let ρ j and σ be the maximum length a granule can assume

along the j th input dimension and output dimension. Parameter

ρ j delimits the maximum expansion region of trapezoidal mem-

bership functions around their midpoints, namely, A 

i 
j 

must not

assume values lower than mp (A 

i 
j 
) − ρ j / 2 nor values greater than

mp (A 

i 
j 
) + ρ j / 2 at any time step. Different values of ρ j produce

different models of the same data stream in different granularities.

ρ j ∀ j and σ assume a single value in [0, 1]. If they are equal to 0,

granules are not expanded. Learning creates a new rule for each

sample, which causes overfitting. If they are equal to 1, a single

granule covers all the data. Evolution is attained by choosing

intermediate values. The higher the value of ρ j , the more compact

tends to be the structure of the eFGP model. 

A granule γ c+1 is created by adding a rule R c+1 to the set

of rules R = { R 1 , . . . , R c } whenever either an input vector, x [ h ] ,

contains at least one element, x 
[ h ] 
j 

, j = 1 , . . . , n, that is not in

the expansion region of A 

i 
j 
, i = 1 , . . . , c, or y [ h ] is not in the

expansion region of B i , i = 1 , . . . , c. Formally, x 
[ h ] 
j 

must belong to

[mp (A 

i 
j 
) − ρ/ 2 , mp (A 

i 
j 
) + ρ/ 2] , j = 1 , . . . , n, to be considered by

the i th granule. Additionally, y [ h ] must belong to [mp (B i ) − σ/ 2 ,

mp (B i ) + σ/ 2] . The new γ c+1 has trapezoidal memberships func-

tions A 

c+1 
j 

and B c+1 , in which l c+1 
j 

= λc+1 
j 

= �c+1 
j 

= L c+1 
j 

= x 
[ h ] 
j 

, ∀ j ,

and u c+1 = υc+1 = ϒ c+1 = U 

c+1 = y [ h ] . Therefore, the new granule,

γ c+1 , is initially a point in the data space, the point ( x , y ) . Initially,

the coefficients of p c+1 are αc+1 
j 

= 0 , j � = 0 , and αc+1 
0 

= y [ h ] ; the

coefficients of q c+1 
θ

, ∀ θ , are set as βc+1 
jθ

= 0 , j � = 0 , and βc+1 
0 θ

= y [ h ] .

Adapting R i consists in expanding or contracting the support

and the core of A 

i 
j 

and B i , and the coefficients of p i and q i 
θ

to fit

new data. If a data sample, ( x , y ) [ h ] , belongs to the expansion re-

gion of a granule, γ i , then its membership functions are enlarged

to cover the sample. If the sample is within γ i , parameters can

be changed in the sense of contracting or expanding the core of

its membership functions. The following situations may happen

according to the position of a sample in relation to a granule: 

• If x 
[ h ] 
j 

∈ [ mp (A 

i 
j 
) − ρ j 

2 , l 
i 
j 
] , then l i 

j 
( new ) = x 

[ h ] 
j 

(support expansion) 

• If x 
[ h ] 
j 

∈ [ l i 
j 
, λi 

j 
] , then λi 

j 
( new ) = x 

[ h ] 
j 

(core expansion) 

• If x 
[ h ] 
j 

∈ [ λi 
j 
, mp (A 

i 
j 
)] , then λi 

j 
( new ) = x 

[ h ] 
j 

(core contraction) 

• If x 
[ h ] 
j 

∈ [ mp (A 

i 
j 
) , �i 

j 
] , then �i 

j 
( new ) = x 

[ h ] 
j 

(core contraction) 

• If x 
[ h ] 
j 

∈ [�i 
j 
, L i 

j 
] , then �i 

j 
( new ) = x 

[ h ] 
j 

(core expansion) 

• If x 
[ h ] 
j 

∈ [ L i 
j 
, mp (A 

i 
j 
) + 

ρ j 

2 ] , then L i 
j 
( new ) = x 

[ h ] 
j 

(support expansion) 

When operating on core parameters, λi 
j 

and �i 
j 
, midpoints of

γ i are updated. As a consequence, support contraction may be

necessary, thus 

• If mp (A 

i 
j 
) − ρ j 

2 > l i 
j 
, then l i 

j 
( new ) = mp (A 

i 
j 
) − ρ j 

2 

• If mp (A 

i 
j 
) + 

ρ j 

2 < L i 
j 
, then L i 

j 
( new ) = mp (A 

i 
j 
) + 

ρ j 

2 

Adaptation of B i uses data y [ h ] and the same relations above.

Only the most active granule, γ i , is chosen to be adapted for a

sample ( x , y ) [ h ] . 
All consequent functions, p i and q i 
θ

∀ θ, are updated using the

ecursive Least Squares algorithm [9] in case R i is the most active

ule for a complete x [ h ] . However, for a complete x [ h ] , coefficients
i 
jθ

, j = 0 , 1 , . . . , n ; j � = θ , are computed ignoring the attribute

 

[ h ] 

θ
, θ = 1 , . . . , n . For an incomplete x [ h ] , with a unique missing

lement, x 
[ h ] 

θ
, only the coefficients of q i 

θ
are updated. In case x [ h ] 

ontains multiple missing values, consequent coefficients are not

pdated. 

After a number of time steps, h r , merging and deleting rules

ay help to keep the model updated. Merging neighbor granules,

ay γ 1 and γ 2 , into a single granule formed by their convex hull,

 = ch (γ 1 , γ 2 ) , happens when they are placed close to each

ther so that γ 
 respects ρ and σ . Parameters of consequent

unctions of merged rules are obtained from 



j = 

α1 
j 
+ α2 

j 

2 

, j = 0 , . . . , n, (7)

nd 



jθ = 

β1 
jθ

+ β2 
jθ

2 

, j = 0 , . . . , θ − 1 , θ + 1 , . . . , n ; ∀ θ . (8)

Concept changes may cause rules to become inactive. Rules are

emoved if they are not activated during h r time steps. The value

hosen for h r depends on how long we want to keep inactive rules

n the memory of the model. 

Notice that if the number of attributes of an application is

arge such that the processing time of one sample is higher than

he sampling rate, then there exist time-granulation [10] and

nline feature-selection methods [17] that can be used prior to

FGP. Otherwise, the eFGP parameters, h r and ρ , can be made

maller and larger, respectively, so that wider granules, and the

ule-merging and deleting procedures can keep a more compact

ummary of the data stream as a set of rules. Therefore, streaming

ata can be processed in a feasible amount of time by the more

ompact fuzzy model. 

The learning procedure to evolve an eFGP model is given in

lgorithm 1 . Steps 3 and 15 suggest that samples are received and

lgorithm 1 eFGP Online Incremental Learning. 

1: Define ρ , σ and h r ; 

2: while 1 do 

3: Read input x [ h ] , h = 1 , . . . ; 

4: if | θ | = 0 then 

5: Give prediction ˆ y using complete functions p i ; 

6: else if | θ | = 1 then 

7: Give prediction ˆ y using reduced-term functions q i 
θ

; 

8: else if | θ | > 1 then 

9: Choose the most active rule for x [ h ] ; 

10: Multiple imputation using the midpoints of the most ac-

tive granule; 

11: Use complete functions p i to give the prediction ˆ y ; 

12: end if 

13: Provide the granular prediction; 

14: Create rule or adapt the most active rule to accommodate

( x , y ) [ h ] ; 

15: Delete sample ( x , y ) [ h ] ; 

16: if h = zh r , z = 1 , . . . then 

17: Merge neighbor granules; 

18: Delete inactive rules; 

19: end if 

0: end while 

iscarded one at a time, an essential feature in online environ-

ent. | θ | denotes the number of missing elements in a given x [ h ] .

he resulting eFGP model is available at any time. The model is



C. Garcia, A. Esmin and D. Leite et al. / Pattern Recognition Letters 128 (2019) 278–282 281 

r  

fi  

m

4

 

e  

p  

t  

p  

c  

c  

a  

r  

–

 

d  

o  

1  

d  

M

R

w  

p  

p  

a  

T  

l  

v  

p  

c

 

M  

T  

t  

p  

t  

p  

h

 

t  

t  

O  

Fig. 1. Numerical and granular Bitcoin prediction. 
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obust to single and multiple MAR and MCAR data using a modi-

ed rule structure and an inherent (nonlinear and nonstationary)

echanism of learning and data imputation. 

. Application example 

A Bitcoin dataset (bitcoincharts.com/charts) is used to evaluate

FGP. The lowest and highest prices during a day as well as closing

rices of previous days are used to predict the closing price of

he next trading day. 4-attribute daily data samples over a 4-year

eriod (starting on Feb. 9, 2014) are considered. Models were

onstructed considering a percentage of missing values. The MAR

ases are: 5% – 1% (which means 5% of chance that the value of

 chosen attribute is missing, and 1% of chance that each of the

emaining values is missing); 10% – 1%; 10% – 5%; 20% – 5%; 20%

10%; 30% – 5%; and 30% – 10%. 

The Bitcoin price is given in US Dollars at the end of the

ay. The minimum and maximum prices at the end of the day,

bserved from February 9, 2014 to February 8, 2018, are USD

71.41 and USD 19,187.78. We normalized (reescaled linearly) the

ata within [0,1]. Prediction accuracy is quantified using the Root

ean Square Error ( RMSE ) index [9] , 

MSE = 

1 

H 

H ∑ 

h =1 

√ 

( ̂  y [ h ] − y [ h ] ) 2 , (9) 

here H is the number of iterations. Given the current input sam-

le, a prediction ˆ y [ h ] of the Bitcoin price for the following day is

rovided. Then, the actual output value y [ h ] becomes available, and

n incremental training step is given using the input-output pair.

his learning approach is referred to as test-before-the-training

earning approach [10] . There is no division of the data in training,

alidation, and test fractions. Test and training are continuously

erformed, sample per sample, on the fly. The RMSE is, therefore,

alculated for test data only. 

Average results for the Bitcoin price with different fractions of

CAR and MAR data considering 10 runs of eFGP are shown in

able 1 . eFGP uses ρ = σ = 0 . 15 , and h r = 50 . With the increase of

he amount of missing data, the RMSE suggests that the estimation

erformance tends to reduce slightly; the number of rules tends

o increase. MCAR data requires a greater number of rules whereas

arametric adaptation prevails in MAR cases. The behavior of eFGP

as been stable in the different scenarios. 

Fig. 1 shows the numerical and granular eFGP estimates for

he hardest, 30%, MCAR case. An accurate tracking of the ac-

ual data can be seen by using the eFGP pointwise estimate ˆ y .

nline learning and creation of new local granules were key
Table 1 

eFGP results for the Bitcoin price: MCAR and MAR data. 

MCAR RMSE Mean # of rules 

0% 0.0219 +/ − 0.0044 14.4 +/ − 0.0 

1% 0.0225 +/ − 0.0033 14.3 +/ − 0.8 

5% 0.0220 +/ − 0.0023 14.1 +/ − 0.2 

10% 0.0213 +/ − 0.0034 6.0 +/ − 0.3 

15% 0.0231 +/ − 0.0047 8.2 +/ − 0.4 

20% 0.0234 +/ − 0.0041 18.9 +/ − 1.9 

30% 0.0252 +/ − 0.0054 16.3 +/ − 1.8 

MAR RMSE Mean # of rules 

5% – 1% 0.0226 +/ − 0.0037 8.8 +/ − 0.1 

10% – 1% 0.0229 +/ − 0.0023 8.8 +/ − 0.2 

10% – 5% 0.0241 +/ − 0.0054 8.1 +/ − 0.1 

20% – 5% 0.0237 +/ − 0.0044 5.5 +/ − 0.3 

20% – 10% 0.0251 +/ − 0.0039 5.8 +/ − 0.5 

30% – 5% 0.0244 +/ − 0.0024 5.4 +/ − 0.3 

30% – 10% 0.0237 +/ − 0.0035 10.9 +/ − 0.4 
oints to keep a reasonable prediction accuracy as the currency

chieved a quite high price followed by an unprecedented fall.

ounds of granules give a range of values around ˆ y (an outer

pproximation of the time-varying and unknown Bitcoin function)

hat may help decision making regarding Bitcoin exchanges and

urchases. 

eFGP was compared to an evolving Granular Neural Net-

ork (eGNN) [8] using min-max neurons, ρ = 0 . 02 , ζ = 0 . 9 , and

 r = 1500 ; evolving Takagi–Sugeno (eTS) [1] using � = 350 , and

 = 0 . 4 ; and extended Takagi–Sugeno (xTS) [1] employing � = 100 .

hese parameters provided the highest average-accuracy of each

ethod based on 10 runs. As alternative methods are not sup-

lied with mechanisms to impute missing data, a zero-order-hold

pproach is employed, i.e., the last prediction is replicated. Fig. 2

hows that eFGP is more robust to MCAR and MAR data across

he range of analyzed values. Notice that eTS and xTS give the

owest average RMSE for the complete dataset in this application.

owever, removing a small percentage of values from the data

tream is enough for eFGP to overcome them. 

The average time spent by eFGP to process a sample on a Intel

7 3.6GHz processor with 16GB RAM using Python-Ubuntu 18.04

n Windows 10 was 9.0 milliseconds (ms). eGNN spent 10.9 ms;

TS consumed 9.8 ms; and xTS spent 8.4 ms. eFGP is competitive

ith the other methods in processing time. 
Fig. 2. Performance comparison on the prediction of the Bitcoin price. 
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5. Conclusion 

We discussed missing values in time-varying data streams. We

presented an evolving fuzzy model with modified rule structure,

and an incremental learning algorithm for model construction,

data imputation, and prediction in online settings where values

may be missing at random and missing completely at random.

eFGP deals with multiple missing data using reduced-term conse-

quent functions and time-varying granules. Experimental results

on cryptocurrency prediction considering from 1% to 30% of

missing values have shown that eFGP overcomes other fuzzy and

neuro-fuzzy evolving methods that utilize sample deletion and

replication of the last output. A particular characteristic of eFGP

concerns the provision of an enclosure of the output data, which

may help decision making in a variety of applications. Further

work will discuss missing-data imputation in semi-supervised

classification of data streams. 
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